A NOVEL SYNTHESIS OF BENZO- AND INDOLO[A]QUINOLIZIDINES BY INTRAMOLECULAR DIELS-ALDER REACTION OF l-AZADIENES

Masataka Ihara, 'Tomoko Kirihara, 'Akihiro Kawaguchi,' Keiichiro Fukumoto, $``'$ and Tetsuji Kametani $''$

a) Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan b) Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

Summary: Intramolecular Diels-Alder reaction of 1-azadienes was conducted by heating the α , β -unsaturated amides ($2a \sim a$ and β) in the presence of trimethylchlorosilane, triethylamine and zinc chloride to give benzo- and indolo[alquinolizidines $(5a \sim e$ and 7).

Intramolecular Diels-Alder reaction is one of the most powerful methods for syntheses of polycyclic ring systems with stereocontrol. $^{\mathrm{1}}$ It is expected that the intramolecular cycloaddition of 1-azadienes² provides a useful tool for the construction of quinolizidines and indolizidines, common frameworks of many alkaloids. However only few examples^{3,4} are so far known mainly due to the difficult formation of 1-azadienes and its scarce reactivity. We have investigated the formation of such systems from α , β -unsaturated amides and the subsequent cycloaddition. Here a novel and facile synthesis of benzo- and indolo-[a]quinolizidines according to this strategy is disclosed.

Formation of the formyl α , β -unsaturated amides $(2a \sim d)^5$ was achieved by the reaction of 3,4-dihydro-6,7-dimethoxyisoquinoline (\downarrow) and α , β -unsaturated acid chlorides in a mixture of dichloromethane and saturated sodium hydrogencarbonate aqueous solution at room temperature. Wittig reaction of the aldehydes $(2a \sim d)$ with triphenylphosphinecarboethoxymethylene in tetrahydrofuran gave the unsaturated esters $(2a \sim d)$.⁵ The cycloaddition through 4 was accomplished by heating the mixture of the unsaturated esters $(2a \alpha \alpha)$, trimethylchlorosilane, triethylamine and zinc chloride in toluene at 170 - 180°C in a sealed tube or refluxing the mixture in <u>o</u>-dichlorobenzene. A typical experiment was carried out as follows. A mixture of $3d$ (150 mg), trimethylchlorosilane (1 ml), triethylamine (1 ml) and anhydrous zinc chloride (100 mg) in o-dichlorobenzene (5 ml) was refluxed for 16 hr. After dilution with benzene, the resulting mixture was washed well with 1% hydrochloric acid. Usual work up followed by purification by silica gel column chromatography affordedtwo products, $\left(\frac{5}{6}\right)^5$ (25% yield) and $(5e)$ \checkmark (41% yield). No formation of the desired quinolizidines

was observed without zinc chloride. **⁶**

Under similar reaction conditions, the unsaturated esters $(\partial_t a_j \circ \rho)$ were transformed into the tricyclic compounds, $(\frac{5}{6})^5$ (44% yield), $(\frac{5}{6})^5$ (52% yield) and $(5c)^5$ (47% yield) as a single stereoisomer, respectively. Stereochemistry of products were determined on the basis of the following reasons. The coupling constant (J = 8 Hz) of the hydrogen at the C_{11b} position of $\overline{\xi}$ resonated at 5.03 ppm clearly indicates that two hydrogens at the C_1 and C_{11b} positions are trans. Treatment of $5e$ with sodium hydride in hot tetrahydrofuran caused epimerization to form $5a$. From the consideration of the transition states, the intermediate $(4R)$ leading to the 2 β -substituent would be disfavored because of a severe nonbonded interaction between the aromatic ring and the silyl group. On the other hand, the intermediate (A, A) leading to 2a-substituent would be assisted by chelation with zinc.^{7,8} Furthermore the observation of ethyl group of 2% and ,5~ at shielded fields suggests **a** boat conformation of ring C in these two molecules.

The unsaturated ester $(\rho)^5$ was also prepared from 3,4-dihydro- β -carboline and similarly subjected to the intramolecular cycloaddition to produce the indolo[a]quinolizidine (7^{5} in 58% yield. Thus an effective synthesis of benzoand indolo[a]quinolizidines has been developed. Application of this method to the synthesis of several natural products are in progress.

Acknowledgment A part of this work was financially supported by Grant-in-Aids No.59570884 and 58210006 from the Ministry of Education, Science and Culture, Japan.

Referenoes and Notes

- 1) Review: A. G. Fallis, Can. J. Chem., $\hat{\beta}_K^2$, 183 (1984) and references cited therein.
- 2) Reviews: D. L. Boger, Tetrahedron, 39, 2869 (1983); M. Ohno, T. Sasaki, J. Syn. Org. Chem. Japan, 42, 125 (1984).
- 3) Y.-S. Cheng, A. T. Lupo, Jr., F. W. Fowler, J. Am. Chem. Soc., 105, 7696 (1983).
- 4) M. A. Whitesell, E. P. Kyba, Tetrahedron Lett., 25 , 2119 (1984).
- 5) All new compounds have been characterized by elemental analysis and/or high resolution mass spectra. Characteristic data are recorded together with yield. 1R spectra were taken in \texttt{CHCl}_3 and <code>NMR</code> spectra in <code>CDC1</code> ; (2a) 64% yield; mp 135 - 137°; NMR δ 10.00 (1H, s, CHO). (2b) 75% yield; mp 143 - 144°; NMR δ 10.03 (1H, s, CHO). (2 β) 77% yield;mp128 - 131°; NMR δ 9.93 (1H, s, CHO). (2d) 65% yield; NMR δ 10.10 (1H, s, CHO). (3a) 70% yield; mp 127 - 128°; IR (CHCl₃) cm⁻¹ 3450 (NH), 1700, 1670, 1630 (C=0); NMR δ 1.33 (3H, t, J = 7 Hz, CH_2CH_3), 2.95 (2H, t, J = 7 Hz, ArC H_2), 3.32 - 3.64 (2H, m, CH₂N), 3.87 (6H, s, 2 × OMe), 4.26 (2H, q, J = 7 Hz, CH_2CH_3), 6.26 (1H, d, J = 16 Hz, COCH=CH), 6.68 and 7.04 (each 1H, each s, 2 × ArH), 7.88 (1H, d, J = 16 Hz, ArC<u>H</u>=CH). (λ b) 88% yield; mp 133 - 134°; IR cm⁻¹ 3450 (NH), 1700, 1680, 1630 (C=0); NMR δ 1.33 (3H, t, J = 7 Hz, CH₂CH₂), 1.82 (3H, dd, $J = 2$ and 8 Hz, $=$ CHCH₃), 2.94 (2H, t, J = 7 Hz, ArCH₂), 3.35 - 3.57 (2H, m, CH₂N), 3.84 and 3.89 (each 3H, each s, 2 × OMe), 4.24 (2H, q, J = 7 Hz, CH_2CH_3), 5.71 (1H, dd, J = 2 and 16 Hz, COCH=), 6.26 (lH, d, J = 16 Hz, COCH=), 6.69 (lH, s, ArH), 6.80 (lH, dq, J = 8 and 16 Hz, =C<u>H</u>CH₃), 7.04 (lH, s, ArH), 7.89 (lH, d, J = 16 Hz, ArC<u>H</u>=). (3c) 73% yield; mp 151 - 153°; IR cm⁻⁺ 3440 (NH), 1700, 1660, 1620 (C=O); NMR δ 1.21 (3H, t, J = 8 Hz, CH₂CH₃), 3.00 (2H, t, J = 7 Hz, ArCH₂), 3.46 - 3.65 (2H, m, CH₂N), 3.86 and 3.88 (each 3H, each s, 2×0 Me), 4.22 (2H, q, J = 8 Hz, CH_2CH_2), 6.25 and 6.29 (each 1H, each d, each J = 16 Hz, $2 \times COCH=$), 6.70 and 7.06 (each 1H, each s, $2 \times ArH$), 7.60 and 7.93 (each 1H, each d, each J = 16 Hz, 2 x CH=CHCO). (2d) 74% yield; mp 123 - 125°; IR cm⁻¹ 3450 (NH), 1700, 1660, 1628 (C=0); NMR δ 1.33 (3H, t, J = 8 Hz, CH₂CH₂), 1.70 (3H, br d, J = 8 Hz, CH₃CH=), 1.75 (3H, s, =C(CH₃)-), 2.93 (2H, t, J = 8 Hz, ArCH₂), 3.30 - 3.63 (2H, m, CH₂N),

3.78 and 3.81 (each 3H, each s, $2 \times$ OMe), 4.23 (2H, q, J = 8 Hz, CL_2CH_3), 5.73 - 6.13 (2H, m, =CHCH₂, NH), 6.46 (1H, d, J = 16 Hz, =CHCO), 6.65 and 7.00 (each 1H, each s, 2 × ArH), 7.83 (1H, d, J = 16 Hz, ArCH=). ($\frac{5}{68}$) 44% yield; IR cm⁻¹ 1720, 1620 (C=0); NMR δ 1.33 (3H, t, $J = 7$ Hz, CH_2CH_3), 3.80 and 3.85 (each 3H, each s, $2 \times OMe$), 5.03 (1H, d, $J = 8$ Hz, 11b-H), 6.60 (2H, br s, 2 × ArH). (5b) 52% yield; mp 158 - 159°; IR cm⁻¹ 1730, 1630 (C=O); NMR 6 1.09 (3H, d, J = 7 Hz, 2-Me), 1.32 (3H, t, J = 8 Hz, CH_2CH_3), 3.78 and 3.83 (each 3H, each s, $2 \times$ OMe), 4.26 (2H, q, J = 8 Hz, CH_2CH_3), 5.00 (1H, d, J = 8 Hz, 11b-H), 6.51 and 6.61 (each 1H, each s, 2 × ArH). (5g) 47% yield; mp 154 - 157°; IR cm⁻¹ 1725, 1630 (C=0); NMR δ 0.74 (3H, t, J = 8 Hz, CH₂CH₃), 3.61 (2H, q, J = 8 Hz, CH₂CH₃), 3.80 and 3.82 (each 3H, each s, $2 \times$ OMe), $5.00 - 5.29$ (2H, m, 11b-H, 6-H), 6.57 and 6.65 (each 1H, each s, $2 \times$ ArH). ($5d$) 25% yield: IR cm⁻¹ 1730, 1625 (C=0); NMR δ 0.98 and 1.23 (each 3H, each d, each $J = 7$ Hz, $2 \times$ Me), 1.35 (3H, t, $J = 7$ Hz, CH_2CH_3), 3.76 and 3.84 (each 3H, each s, $2 \times$ OMe), 4.50 (2H, q, J = 7 Hz, CH_2CH_2), 5.04 (1H, d, J = 9 Hz, 11b-H), 6.43 and 6.61 (each 1H, each s, 2 × ArH). (5g) 41% yield: mp 166 - 168°; IR cm⁻¹ 1730, 1625 (C=O); NMR 6 0.88 (3H, t, J = 7 Hz, CH_2CH_3), 1.15 and 1.32 (each 3H, each d, each J = 7 Hz, 2 × Me), 3.80 and 3.83 (each 3H, each s, $2 \times$ OMe), 4.68 - 5.16 (2H, m, 11b-H, 6-H), 6.56 and 6.63 (each 1H, each s, $2 \times$ ArH). (g) 62% yield from the ß-carboline; mp 194 - 195°; IR cm $^{-1}$ 3475 - 3460 (2 × NH), 1700, 1682, 1632 (C=O); NMR δ 1.34 (3H, t, J = 6 Hz, CH₂CH₃), 1.79 (3H, dd, J = 2 and 5.8 Hz, =CHCH₃), 3.14 (2H, t, J= 5.7 Hz, ArCH₂), 3.43 - 3.69 (2H, m, CH₂N), 4.25 (2H, q, J = 6 Hz, CH_2CH_3 , 5.66 (1H, dd, J = 2 and 16 Hz, COCH=), 6.17 (1H, d, J = 16 Hz, COCH=), 6.81 (1H, dq, J = 16 and 5.8 Hz, =C<u>H</u>CH₂), 7.71 (1H, d, J = 16 Hz, ArC<u>H</u>=), 8.42 (1H, br s, NH). (7) 58% yield; IR cm $^{\text{+}}$ 3453 (NH), 1710, 1630 (C=0); NMR δ 1.04 (3H, d, J = 5 Hz, 2-Me), 1.39 (3H, t, J = 6 Hz, CH_2CH_3), 4.39 (2H, q, J = 6 Hz, CH_2CH_3), 4.98 - 5.27 (2H, m, 12b-H, 6-H), 8.17 (lH, br S, NH).

- 6) S. Danishefsky, T. Kitahara, J. Am. Chem. Soc., 96 , 7807 (1974).
- 7) M. Ihara, M. Toyota, K. Fukumoto, T. Kametani, Tetrahedron Lett., λ_0^2 , 2167 (1984).
- 8) The preferred formation of $5b e$ and 7 could also be understood by the secondary orbital effect.

(Received in Japan 11 June 1984)